Weed Control in
Rice-01
|
|||
---|---|---|---|
Project Leader and Principal UC Investigators Albert Fischer, assistant professor, Weed Science Group, Dept. of Vegetable Crops, UC Davis |
Scientists working on this project evaluate promising new
herbicides, combinations of existing compounds, cultural practices, herbicide resistance,
weed biology and other areas related to controlling weeds in Californias
water-seeded rice. Progress in these areas is reported below.
Promising New HerbicidesResearch continued on Command (clomazone) for a fourth season at the Rice Experiment Station (RES) and at two on-farm locations. This compound is a pigment synthesis inhibitor, a new mode of action, is designed to control herbicide-resistant watergrass and sprangletop. Command is applied in a granular form and has repeatedly proven effective against watergrass very early in rice growth. Beyond early stages, however, effectiveness decreases and rice injury occurs. Last year, a warmer than usual spring may have contributed to the injury problem. Loss of rice foliage resulting from this damage reduced rice competitiveness and allowed new flushes of watergrass to emerge. Some varietiesAkitakomachi, Calmochi-101, CH-201, M-104, M-202, M-205 and S-102were more sensitive to Command when applied at high rates. Symptoms include foliar chlorosis and bleaching, stunting and stand reduction. Noticeably tolerant varieties were A-201, CT-201, L-204 and L-205. Command could become a very useful tool for early watergrass and sprangletop control. However, this herbicide may not be appropriate for use with certain varieties unless new techniques are developed to reduce rice injury. An expanded experiment will be conducted again in 2002 in a flooded levee plot system. Regiment (bispyribac-sodium) is a new post-emergent herbicide that will be available in
2002 to control resistant watergrass. Applied with a silicone surfactant, it can be
effective on watergrass, ricefield bulrush and California
Clincher (cyhalofop) is a post-emergent herbicide highly active on susceptible watergrass and sprangletop. It has been tested at the RES four years and at off-station field locations for two seasons. Clincher is very safe on rice and can be applied from two-leaf stage up to before panicle initiation. It can also be applied in sequential applications for broad-spectrum control. Draining fields for post-emergent herbicide applications usually encourages new weed emergence, so reflooding in a timely manner is important. This herbicide will not control watergrass resistant to Whip (fenoxaprop). Clincher combined with propanil did not provide effective sprangletop or watergrass control. Clincher mixed with Grandstand antagonized watergrass control. However, Clincher applied at the five-leaf stage of rice, followed by a sequential application of Regiment at the one- to three- tiller stage provided excellent control of watergrass, sprangletop and California arrowhead. Similarly, Clincher followed by propanil or Sempra (halosulfuron) resulted in excellent broad-spectrum control. Shark (carfentrazone) is a useful sedge and broadleaf herbicide that can be applied as post-emergent in a direct spray or dry application, in combination with other into-water herbicides and in sequential weed control operations. Foliar tank-mix applications of Shark and propanil injured rice and reduced weed control. Shark mixed with Clincher at the five- to six-leaf stage of rice antagonized watergrass control. Other FormulationsDuet (a combination of propanil and bensulfuron) was tested for a third season at the RES and a second year off-station at another location with watergrass resistance. Duet provided fair-to-good watergrass control and excellent control of sedges and broadleaf weeds at both locations. BAS 625H, a cyclohexadione ACCase inhibitor, was tested for a third season at RES for its effectiveness as a grass herbicide. Compared to similar compounds, it was safer to rice than Ricestar (feoxaprop and safener) but did not provide the same level of control or safety as Clincher. It performed very well against sprangletop and, according to the manufacturer, is more effective on early watergrass than late watergrass.
Sempra (halosulfuron) is an ALS inhibitor used with a similar range of control as Londax (bensulfuron). It was tested as a foliar spray and an into-the-water treatment at RES for a second season. Sempra appears to be somewhat more active than Londax. Combinations with propanil resulted in good watergrass and excellent sedge control. Because of its similar mode of action, Sempra will be restricted to sites where Londax resistance does not occur. Clearfield RiceThe ClearfieldŽ rice system was used for the first time at the RES in 2001. This system is being developed by BASF and is currently targeted at the Southern rice states for the control of red rice. California weed scientists have evaluated it as an option for control of watergrass and sprangletop. BASF has not yet developed it in California. Clearfield rice is not transgenic rice but is based on mutant breeding technology. It is designed to incorporate resistance to broad-spectrum imidazlinone herbicides such as Newpath (imazethapyr) and Raptor (imazethapox) that would otherwise be lethal to rice. Newpath and Raptor provided excellent control of watergrass, sprangletop and ricefield bulrush. Regiment controlled watergrass and ricefield bulrush. All herbicides in this trial, including Londax, were weak against smallflower umbrellasedge and redstem, which may have become resistant to this and other ALS inhibitors in this field. For this reason, the Clearfield rice system may have a tough time being completely effective in those areas where broadleaf and sedges have developed resistance to ALS inhibitors. Genetic PurityPrompted by the need to ensure genetic purity as established by the California Rice Certification Act (CRCA), a large experiment was initiated in 2001 to determine maximum distances necessary to prevent pollen migration from transgenic to non-transgenic rice. Herbicide-resistant rice developed with genetic engineering could provide a tool for overcoming the crippling effects of herbicide resistance. However, concerns have been raised about the potential for outcrossing genetic traits through cross pollination from one plant to another. The CRCA calls for the development of procedures to ensure identity preservation, including isolation distances. Wind speed and turbulence, temperature, relative humidity and other climatic conditions come into play. The isolation distances given by seed-certification agencies are, for the most part, educated guesses, so a two-year field study has been established to monitor potential outcrossing of transgenic rice to conventional rice. Two experiments were initiated with the transgenic rices Liberty-Link M-202 and Round-Up Ready M-202, which are resistant to glufosinate and glyphosate, respectively. The trials were planted at the RES and will monitor outcrossing of these traits to conventional M-202. Results for this experiment are currently being evaluated at UC Davis and at Mid-West Seed, Inc. in Brookings, South Dakota.
|